Straight Lines

Question 1.

In a \triangle ABC, if A is the point (1, 2) and equations of the median through B and C are respectively x + y = 5 and x = 4, then B is

- (a)(1,4)
- (b)(7, -2)
- (c) none of these
- (d)(4,1)

Answer: (b) (7, -2)

The equation of median through B is x + y = 5

The point B lies on it.

Let the coordinates of B are $(x_1, 5 - x_1)$

Now CF is a median through C,

So coordinates of F i.e. mid-point of AB are

$$((x_1 + 1)/2, (5 - x_1 + 2)/2)$$

Now since this lies on x = 4

$$\Rightarrow$$
 $(x_1 + 1)/2 = 4$

$$\Rightarrow$$
 x₁ + 1 = 8

$$\Rightarrow x_1 = 7$$

Hence, the cooridnates of B are (7, -2)

Question 2.

The equation of straight line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0

(a)
$$y - x + 1 = 0$$

(b)
$$y - x - 1 = 0$$

(c)
$$y - x + 2 = 0$$

(d)
$$y - x - 2 = 0$$

Answer: (b) y - x - 1 = 0

Given straight line is: x + y + 1 = 0

$$\Rightarrow$$
 y = -x - 1

Slope = -1

Now, required line is perpendicular to this line.

So, slope =
$$-1/-1 = 1$$

Hence, the line is

$$y-2=1\times(x-1)$$

$$\Rightarrow$$
 y - 2 = x - 1

$$\Rightarrow$$
 y - 2 - x + 1 = 0

$$\Rightarrow$$
 y - x - 1 = 0

Question 3.

The points (-a, -b), (0, 0), (a, b) and (a^2, ab) are

- (a) vertices of a square
- (b) vertices of a parallelogram
- (c) collinear
- (d) vertices of a rectangle

Answer: (c) collinear

Let the four points are P(-a, -b), O(0, 0), Q(a, b) and R(a², ab)

Now,

$$m_1 = \text{slope of OP} = b/a$$

$$m_2 = \text{slope of OQ} = b/a$$

$$m_3$$
 = slope of OR = b/a

Since
$$m_1 = m_2 = m_3$$

So, the points O, P, Q, R are collinear.

Question 4.

The equation of the line through the points (1, 5) and (2, 3) is

(a)
$$2x - y - 7 = 0$$

(b)
$$2x + y + 7 = 0$$

(c)
$$2x + y - 7 = 0$$

(d)
$$x + 2y - 7 = 0$$

Answer: (c) 2x + y - 7 = 0

Given, points are: (1, 5) and (2, 3)

Now, equation of line is

$$y - y_1 = \{(y_2 - y_1)/(x_2 - x_1)\} \times (x - x_1)$$

$$\Rightarrow$$
 y - 5 = {(3 - 5)/(2 - 1)} × (x - 1)

$$\Rightarrow y - 5 = (-2) \times (x - 1)$$

$$\Rightarrow$$
 y - 5 = -2x + 2

$$\Rightarrow 2x + y - 5 - 2 = 0$$

$$\Rightarrow 2x + y - 7 = 0$$

Question 5.

The slope of a line which passes through points (3, 2) and (-1, 5) is

- (a) 3/4
- (b) -3/4
- (c) 4/3
- (d) -4/3

Answer: (b) -3/4

Given, points are (3, 2) and (-1, 5)

Now, slope m = (5-2)/(-1-3)

$$\Rightarrow$$
 m = -3/4

So, the slope of the line is -3/4

Question 6.

The ratio of the 7th to the (n-1)th mean between 1 and 31, when n arithmetic means are inserted between them, is 5 : 9. The value of n is

- (a) 15
- (b) 12
- (c) 13
- (d) 14

Answer: (d) 14

Let the A.P. are 1, A_1 , A_2 , A_3 A_m , 31

$$a = 1$$
, $a_n = 31$ and $n = m + 2$

Now,
$$a_n = a + (n - 1)d$$

$$\Rightarrow 31 = 1 + (m + 2 - 1)d$$

$$\Rightarrow$$
 30 = (m + 1)d

$$\Rightarrow$$
 d = 30/(m + 1)

Again,
$$A_7 = a + 7d = 1 + 7[30/(m+1)] \dots 1$$

and
$$A_{m-1} = a + (m-1)d = 1 + (m-1)[30/(m+1)] \dots 2$$

From equation 1 and 2, we get

$$A_7/A_{m-1} = 5/9$$

$$\Rightarrow$$
 1 + 7[30/(m + 1) / 1 + (m - 1)[30/(m + 1)] = 5/9

$$\Rightarrow$$
 [m + 1 + 7(30)] / [m + 1 + 30 m - 30] = 5/9

$$\Rightarrow$$
 [m + 211] / [31 m - 29] = 5/9

$$\Rightarrow 9[m + 211] = 5[31 m - 29]$$

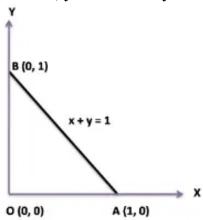
$$\Rightarrow$$
 9 m + 1899 = 155 m - 145

$$\Rightarrow$$
 146 m = 2044

$$\Rightarrow m = 2044/146$$

Question 7.

The ortho centre of the triangle formed by lines xy = 0 and x + y = 1 is :


- (a)(0,0)
- (b) none of these
- (c) (1/2, 1/2)
- (d) (1/3, 1/3)

Answer: (a) (0, 0)

Given lines are:

$$xy = 0$$
 and $x + y = 1$

$$\Rightarrow$$
 x = 0, y = 0 and x + y = 1

In a triangle OAB, OA and OB are the altitudes which intersect at O. So, the required orthocentre is (0, 0)

Question 8.

Two lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ are parallel if

- (a) $a_1/a_2 = b_1/b_2 \neq c_1/c_2$
- (b) $a_1 / a_2 \neq b_1 / b_2 = c_1 / c_2$
- (c) $a_1/a_2 \neq b_1/b_2 \neq c_1/c_2$
- (d) $a_1/a_2 = b_1/b_2 = c_1/c_2$

Answer: (a) $a_1 / a_2 = b_1 / b_2 \neq c_1 / c_2$

Two lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ are parallel if

 $a_1/a_2 = b_1/b_2 \neq c_1/c_2$

Question 9.

If the line x/a + y/b = 1 passes through the points (2, -3) and (4, -5), then (a, b) is

(a)
$$a = 1$$
 and $b = 1$

(b)
$$a = 1$$
 and $b = -1$

(c)
$$a = -1$$
 and $b = 1$

(d)
$$a = -1$$
 and $b = -1$

Answer: (d) a = -1 and b = -1

Given equation of the line is x/a + y/b = 1

$$\Rightarrow$$
 bx + ay = ab

It is given that this line passes through (2, -3)

$$\Rightarrow$$
 b(2) + a(-3) = ab

$$\Rightarrow$$
 2b - 3a = ab - (1)

It also passes through (4, -5)

$$\Rightarrow$$
 4b - 5a = ab - (2)

On solving equation (1) and (2), we get

$$a = -1$$
 and $b = -1$

Question 10.

The angle between the lines x - 2y = y and y - 2x = 5 is

(a)
$$tan^{-1}(1/4)$$

(b)
$$tan^{-1} (3/5)$$

(c)
$$tan^{-1} (5/4)$$

(d)
$$tan^{-1}(2/3)$$

Answer: (c) $\tan^{-1} (5/4)$

Given, lines are:

$$x - 2y = 5 \dots 1$$

and
$$y - 2x = 5 \dots 2$$

From equation 1,

$$x - 5 = 2y$$

$$\Rightarrow$$
 y = x/2 - 5/2

Here,
$$m_1 = 1/2$$

From equation 2,

$$y = 2x + 5$$

Here.
$$m_2 = 2$$

Now,
$$\tan \theta = |(m_1 + m_2)/\{1 + m_1 \times m_2\}|$$

$$= |(1/2+2)/\{1+(1/2)\times 2\}|$$

$$= |(5/2)/(1+1)|$$

$$= |(5/2)/2|$$

$$= 5/4$$

$$\Rightarrow \theta = \tan^{-1} (5/4)$$

Question 11.

The points on the y-axis whose distance from the line x/3 + y/4 = 1 is 4 units is

- (a) (0, 32/3) and (0, 8/3)
- (b) (0, -32/3) and (0, 8/3)
- (c) (0, -32/3) and (0, -8/3)
- (d) (0, 32/3) and (0, -8/3)

Answer: (d) (0, 32/3) and (0, -8/3)

Given equation of line is (x/3) + (y/4) = 1

$$\Rightarrow$$
 4x + 3y = 12

Let (0, b) is the point of the y-axis whose distance from given line is 4 unit.

When we compare equation 1 with general form of the equation Ax + By + C = 0, we get

$$A = 4$$
, $B = 3$, $C = -12$

Now perpendicular distance of a line Ax + By + C = 0 from a point (x_1, y_1) is

$$d = |Ax_1 + By_1 + C|/\sqrt{(A^2 + B^2)}$$

So perpendicular distance of a line 4x + 3y - 12 = 0 from a point (0,b) is

$$4 = |4 \times 0 + 3 \times b - 12| / \sqrt{(4^2 + 3^2)}$$

$$\Rightarrow 4 = |3b - 12|/\sqrt{(16 + 9)}$$

$$\Rightarrow 4 = \frac{|3b - 12|}{\sqrt{25}}$$

$$\Rightarrow 4 = |3b - 12|/5$$

$$\Rightarrow 4 \times 5 = |3b - 12|$$

$$\Rightarrow |3b - 12| = 20$$

Now

$$3b - 12 = 20$$
 and $3b - 12 = -20$

$$\Rightarrow$$
 3b = 20 12 and 3b = -20 + 12

$$\Rightarrow$$
 3b = 32 and 3b = -8

$$\Rightarrow$$
 b = 32/3 and b = -8/3

So the points are (0, 32/3) and (0, -8/3)

Question 12.

Equation of the line passing through (0, 0) and slope m is

$$(a) y = mx + c$$

(b)
$$x = my + c$$

(c)
$$y = mx$$

(d)
$$x = my$$

Answer: (c) y = mx

Equation of the line passing through (x_1, y_1) and slope m is

$$(y-y_1) = m(x-x_1)$$

Now, required line is

$$(y-0)=m(x-0)$$

$$\Rightarrow$$
 y = mx

Ouestion 13.

The distance between the lines 3x + 4y = 9 and 6x + 8y = 15 is

- (a) 3/10
- (b) 2/3
- (c) 3/2
- (d) 7/10

Answer: (a) 3/10

Given equations are:

$$3x + 4y = 9$$

$$\Rightarrow$$
 3x + 4y - 9 = 0 and

$$6x + 8y = 15$$

$$\Rightarrow 6x + 8y - 15 = 0$$

$$\Rightarrow 3x + 4y - 15/2 = 0$$

Now, compare these lines with $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$, we get

$$a_1 = 3$$
, $b_1 = 4$, $c_1 = -9$ and

$$a_2 = 3$$
, $b_2 = 4$, $c_2 = -15/2$

Now, distance between two parallel line = $|c_1 - c_2|/\sqrt{(a_1^2 + b_1^2)}$

$$= |-9 + 15/2|/\sqrt{(3^2 + 4^2)}$$

$$= |(-18 + 15)/2|/\sqrt{25}$$

$$=|(-3/2)|/5$$

$$=(3/2)/5$$

$$= 3/10$$

Question 14.

What can be said regarding if a line if its slope is negative

- (a) θ is an acute angle
- (b) θ is an obtuse angle
- (c) Either the line is x-axis or it is parallel to the x-axis.
- (d) None of these

Answer: (b) θ is an obtuse angle

Let θ be the angle of inclination of the given line with the positive direction of x-axis in the

anticlockwise sense.

Then its slope is given by $m = \tan \theta$

Given, slope is positive

- \Rightarrow tan $\theta < 0$
- \Rightarrow 0 lies between 0 and 180 degree
- $\Rightarrow \theta$ is an obtuse angle

Ouestion 15.

Two lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ are parallel if

- (a) $a_1/a_2 = b_1/b_2 \neq c_1/c_2$
- (b) $a_1/a_2 \neq b_1/b_2 = c_1/c_2$
- (c) $a_1/a_2 \neq b_1/b_2 \neq c_1/c_2$
- (d) $a_1/a_2 = b_1/b_2 = c_1/c_2$

Answer: (a) $a_1/a_2 = b_1/b_2 \neq c_1/c_2$

Two lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ are parallel if

$$a_1/a_2 = b_1/b_2 \neq c_1/c_2$$

Question 16.

The slope of a line making inclination of 30° with the positive direction of x-axis is

- (a) 1/2
- (b) $\sqrt{3}$
- (c) $\sqrt{3/2}$
- $(d) 1/\sqrt{3}$

Answer: (d) $1/\sqrt{3}$

Here inclination of the line is 30°

So, slope of the line $m = \tan 30^\circ = 1/\sqrt{3}$

Question 17.

The perpendicular distance of a line 4x + 3y + 5 = 0 from the point (-1, 2) is

- (a) 5
- (b) 4
- (c) 2
- (d) 1

Answer: (c) 2

The perpendicular distance of a line 4x + 3y + 5 = 0 from the point (-1, 2)

 $d = |4 \times (-1) + 3 \times 3 + 5|/\sqrt{(4^2 + 3^2)}$

$$\Rightarrow$$
 d = $|-4 + 9 + 5|/\sqrt{(16 + 9)}$

$$\Rightarrow$$
 d = $10/\sqrt{(25)}$

$$\Rightarrow$$
 d = 10/5

$$\Rightarrow$$
 d = 2

Question 18.

The inclination of the line 5x - 5y + 8 = 0 is

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

Answer: (b) 45°

Given line is: 5x - 5y + 8 = 0

$$\Rightarrow$$
 5y = 5x + 8

$$\Rightarrow y = (5/5)x + 8/5$$

$$\Rightarrow$$
 y = x + 8/5

Now tan $\theta = 1$

$$\Rightarrow \tan \theta = \tan 45^{\circ}$$

$$\Rightarrow \theta = 45^{\circ}$$

So, the inclination of the line is 45°

Question 19.

The points (-a, -b), (0, 0), (a, b) and (a^2, ab) are

- (a) vertices of a square
- (b) vertices of a parallelogram
- (c) collinear
- (d) vertices of a rectangle

Answer: (c) collinear

Let the four points are P(-a, -b), O(0, 0), Q(a, b) and R(a², ab)

Now,

$$m_1 = \text{slope of OP} = b/a$$

$$m_2 = \text{slope of OQ} = b/a$$

$$m_3$$
 = slope of OR = b/a

Since
$$m_1 = m_2 = m_3$$

So, the points O, P, Q, R are collinear.

Question 20.

Given the three straight lines with equations 5x + 4y = 0, x + 2y - 10 = 0 and 2x + y + 5 = 0, then these lines are

- (a) none of these
- (b) the sides of a right angled triangle
- (c) concurrent
- (d) the sides of an equilateral triangle

Answer: (c) concurrent

Since the determinant of these lines is equal to zero

i.e.

|5 4 0|

 $|1 \ 2 \ -10| = 0$

|2 1 -5|

So, these three lines are concurrent.